Dependent Weighted Aggregation Operators of Hesitant Fuzzy Numbers
نویسنده
چکیده
In this paper, motivated by the ideas of dependent weighted aggregation operators, we develop some new hesitant fuzzy dependent weighted aggregation operators to aggregate the input arguments taking the form of hesitant fuzzy numbers rather than exact numbers, or intervals. In fact, we propose three hesitant fuzzy dependent weighted averaging(HFDWA) operators, and three hesitant fuzzy dependent weighted geometric(HFDWG) operators based on different weight vectors, and the most prominent characteristic of these operators is that the associated weights only depend on the aggregated hesitant fuzzy numbers and can relieve the influence of unfair hesitant fuzzy numbers on the aggregated results by assigning low weights to those “false” and “biased” ones. Some examples are given to illustrated the efficiency of the proposed operators. Keywords—Hesitant fuzzy numbers, hesitant fuzzy dependent weighted averaging(HFDWA) operators, hesitant fuzzy dependent weighted geometric(HFDWG) operators.
منابع مشابه
Hesitant q-rung orthopair fuzzy aggregation operators with their applications in multi-criteria decision making
The aim of this manuscript is to present a new concept of hesitant q-rung orthopair fuzzy sets (Hq-ROFSs) by combining the concept of the q-ROFSs as well as Hesitant fuzzy sets. The proposed concept is the generalization of the fuzzy sets, intuitionistic fuzzy sets, hesitant fuzzy sets, and Pythagorean fuzzy sets as well as intuitionistic hesitant fuzzy sets (IHFSs) and hesitant Pythagorean fuz...
متن کاملHesitant Fuzzy Linguistic Arithmetic Aggregation Operators in Multiple Attribute Decision Making
In this paper, we investigate the multiple attribute decision making (MADM) problem based on the arithmetic and geometric aggregation operators with hesitant fuzzy linguistic information. Then, motivated by the idea of traditional arithmetic operation, we have developed some aggregation operators for aggregating hesitant fuzzy linguistic information: hesitant fuzzy linguistic weighted average (...
متن کاملPower harmonic aggregation operator with trapezoidal intuitionistic fuzzy numbers for solving MAGDM problems
Trapezoidal intuitionistic fuzzy numbers (TrIFNs) express abundant and flexible information in a suitable manner and are very useful to depict the decision information in the procedure of decision making. In this paper, some new aggregation operators, such as, trapezoidal intuitionistic fuzzy weighted power harmonic mean (TrIFWPHM) operator, trapezoidal intuitionistic fuzzy ordered weighted po...
متن کاملSome Aggregation Operators For Bipolar-Valued Hesitant Fuzzy Information
In this article we define some aggregation operators for bipolar-valued hesitant fuzzy sets. These operations include bipolar-valued hesitant fuzzy ordered weighted averaging (BPVHFOWA) operator, bipolar-valued hesitant fuzzy ordered weighted geometric (BPVHFOWG) operator and their generalized forms. We also define hybrid aggregation operators and their generalized forms and solved a decision-m...
متن کاملGeneralized Hesitant Fuzzy Prioritized Einstein Aggregation Operators and Their Application in Group Decision Making
In this paper, a hesitant fuzzy multiple attribute group decision making problem where there exists prioritization relationships over the attributes and decision makers is studied. First, some Einstein operations on hesitant fuzzy elements and their properties are presented. Then, several generalized hesitant fuzzy prioritized Einstein aggregation operators, including the generalized hesitant f...
متن کامل